Затем это море удаляется от обитаемой земли и никто не знает, каково оно и что на нем есть.
„Mope ар-Рума и Мис̣ра (Египта) выходит из залива, что выходит из моря Западного океана, у острова, который называется Гадйра напротив Андалусии, к ССӯру (Тиру) и Сִайда̄ (Сидону) из области востока. Длина его 5000 миль, а ширина в одном месте 600 миль, в другом 700 миль, в третьем 800 миль. В нем один залив, который выходит в сторону севера близко от Румии (Рима), длина его 500 миль, называется он Адрия (Адрйс). Другой выходит по направлению к земле Нарбоне; длина его 200 миль. Во всем этом море 162 острова обитаемых, из них пять больших: один - остров Курнус (Корсика), с окружностью в 200 миль, Сардиния с окружностью в 300 миль, Кубрус (Кипр) с окружностью в 350 миль, Сиџилия с окружностью в 500 миль и Крит с окружностью в 300 миль.
„Море Понтос (Бунт̣у) тянется от Ла̄зики (страны Лазов) до великого Константинополя. Длина его 1060 миль, а ширина 300 миль. В него впадает река, которая называется Танаис (Дон), течение его со стороны севера от озера, которое называется Мэотис (Азовское). Это большое море, хотя и называется озером; длина его с востока на запад 300 миль, а ширина 100 миль. У Константинополя отделяется от него залив (Босфор), который течет точно река и впадает в море Мис̣ра. Ширина его у Константинополя величиной в 3 мили, и Константинополь (лежит) на нем.
„Море Джурджа̄на (Каспийское) - море ал-Ба̄ба (Врат Дербента). Длина его с запада на восток 800 миль, а ширина 600 . На нем два острова напротив Джурджа̄на, которые в прошлом были обитаемы. Вот обитаемые места на известном море земли, а Алла̄х про это знает лучше.
„Земля делится на три части. Первая - от Зеленого моря (Атлантического океана) со стороны севера и залива, который выходит из Понтоса в Великое (Средиземное) море, и от области, что между озером Мэотис к Понтосу. Границы этой области с запада и севера - Западное море, оно же Океан; со стороны юга - море Мис̣ра и ар-Рума; со стороны востока - Танаис и озеро Мэотис. Эта земля похожа на остров; название ее Европа (Аурӯфй).
„Вторая часть со стороны юга, от моря Мис̣ра до моря ал-Хабаша. Граниџы этой области с запада - Зеленое море, с севера море Мис̣ра и ар-Рума, с востока ал-Арйш, с юга море ал-Хабаша. Называется эта часть Ливия (Лубийа).
„Третья часть - все, что остается из обитаемой земли до конечных пределов ее. Гранищы ее с запада Танаис, река (Босфор), залив, ал"Арйш и Айла; с юга - море Йемена и ал-Хинда, с востока - конечные обитаемые пределы ас-Сйна в сторону востока и самый ас-Сйн. Называется эта часть великая Азия (Ашийа).
„Эти три части объединяют климаты и области и все обитаемые страны. Что же касается той части, относительно которой не ведомо,

обитаема она или пустынна, то это одиннадџать двенадџатых земли. Известная же часть, которая обитаема от экватора, в ней (есть) моря и пустыни. Если кто-нибудь спросит: «Есть ли в этих одиннадщати частях растения, животные и обиталища", то ответ на это будет только по аналогии и умозрению. Что же касается обитаемости нашей земли, то она не выходит за пределы и разделения, которые мы упомянули. А что за этим, никто нам не сообщил. Однако умозрение и домысел приходит к тому, чего никто из обладающих знанием не отриџает, путем аналогии. Именно: солнце, луна и звезды движутся у нас и сообразно с их движением, близостью и отдаленностью бывает лето и зима, растения, животные, заселенность и все, что знает каждый. Если солнце и звезды восходят над всяким местом остальной земной сферы так же, как у нас, то возможно, что там есть растения и животные, моря и горы, как у нас. Так и должно быть.
„Величина одного градуса в упомянутых милях близка к 65 ; это приблизительно путь двух дней, а Алла̄х знает лучше.
„Что же касается долгот и широт городов, как это обрисовано в книге "Картина земли", то положения городов определяются по долготе, которая обозначает пространство между западом и востоком. Они начинают ее с "Островов обитаемых", что в море Западного океана, в сторону востока, сообразно с найденным временем затмений, особенно луны, наступающим раньше в одних, чем в других городах. Отсюда они узнали, что полдень во всяком городе предшествует полдню в другом со стороны запада на такие доли времени по небесному экватору (му'аддил аннаха̄p), величина которых соответствует пространству времени между затмением в двух городах. К этому относится еше приблизительно и то, что они заимствовали из сообщений тех, кто странствовал по дорогам.
„Что же касается широт городов, то они взяли их путем наблюдений над солнеем во время полдня в (разных) странах; они определили удаленность и близость его от точки зенита головы, как мы разъяснили в предшествуюшем в этой книге. Так они узнали удаленность всякого города от экватора, а это-расстояние между югом и севером. Под каждым городом они пометили приблизительно расстояние его от "Вечных островов» по долготе и от әкватора по широте. Мы это включили в таком виде, как нашли в известной книге «Картина земли», а также упомянули отдельно средние ($\operatorname{ayc\overline {c}m\text {)известныхстраниобластей,как}\quad \text {а}}$ сделал Птолемей, всего 94 местности. В этой книге имеются ошибки в долготах и широтах. Мы еще повторим то, что нужно из этого, в дальнейшем в нашей книге". ${ }^{1}$

[^0]Этой главой, конечно, не исчерпывается географический материал, сообщаемый в „Зйдже" ал-Батта̄нй. Таблища климатов у него почти совпадает с той, которую дает ал-Фарга̄нй и естественно расходится с ал-Хо̄ризмй, который, как мы уже видели, в этом вопросе стоит особняком. Ал-Батта̄нй помещает ее не в географической части, не с теми географическими таблицами, о которых он упоминал в конце приведенной главы, а в таблиџах, связанных со светилами. Его географические таблиџы тоже представляют особый интерес. В перевод Платона из Тиволи они почему-то не вошли и поэтому стали доступны науке только со средины 90 -х годов XIX в. в основательной обработке Наллино, еще предшествовавшей его полному изданию. Они дают распределенный на две категории каталог 273 местностей с указанием их широт и долгот. ${ }^{1}$ На первый взгляд можно было бы думать, что ал-Батта̄нй имел в виду дополнить ал-Хобризмй: в первом списке он дает как раз перечень 94 епархий обитаемой земли, которы ф фигурировал в VIII книге Птолемея и не вошел в „Картину земли" ал-Хо̄ризмй. В своих обеих таблицах и во введении к „Зйджу" он действительно в качестве одного источника называет „Книгу картины земли", но видеть в ней работу ал-Хо̄ризмй нельзя даже потому, что в переводе Платона из Тиволи, на основании бывшего у него арабского оригинала, к этому названию добавлено „известная под именем Географии". И действительно, Наллино показал, что здесь кроется ссылка на обработку птолемеевской геогра-
 ком ал-Баттӓнй, а последний, повидимому, даже сознательно избегал пользования работами ма'муновских астрономов, если судить по отсутствию цитат из них в его произведении. ${ }^{3}$ Он даже не упоминает произведенного ими измерения градуса меридиана. С другой стороны, однако, автор обработки Птолемея, использованной ал-Батта̄нй, был знаком и с работой ал-Хо̄ризмй, откуда заимствовал некоторые данные, ${ }^{4}$ в такой же мере, как с сирийскими обработками Птолемея. ${ }^{5}$

Все вопросы, связанные с ранней историей математической географии, как мы уже видели, очень сложны и запутаны; тоже приходится сказать и об источниках ал-Батта̄нй. Только одним его произведения отличаются среди других, доступных теперь науке: ни один астрономи-

Греческие географические названия (в переводимом отрывке „ССабиева Зйджа", гл. VI) приводятся в их оригинальной форме, с указанием транскрипций ал-Батта̄нй, если они сильно расходятся, в скобках; при арабских названиях, вошедших в обиход, в скобках же дается принятый европейский эквивалент. В скобках также помещены эквиваленты или пояснительные слова, отсутствующие в тексте.

1 О его системе определения широт см.: Schoy. Polhöhenbestimmungen, стр. 16-19.
${ }^{2}$ Nallino. Le Tabelle, ctp. 162-163.-Nallino. Al-Battānī, I, ctp. XLII.
${ }^{3}$ Nallino. Le Tabelle, cтp. 163, прим. 10. - Nallino. Al-Battānī, I, crp. XLII.
${ }^{4}$ J. K. Wright. Geogr. Lore, стр. 393, прим. 7.
${ }^{5}$ Honigmann. Die sieben Klimata, ctp. 111-135.

ческий трактат ранней эпохи не представлен в таком образцовом критическом издании, переводе и комментарии, как „аз-Зйдж ас̣-С̣āби'" в фундаментальной трехтомной работе Наллино (1899-1907). Его комментарий для всякого, кто дает себе труд в него вникнуть, является, в сущности, своеобразной энџиклопедией всего, что относится к арабской астрономии и математической географии.

Приблизительно веком позже ал-Батта̄нй в фатимидском Египте был создан столь же достойный памятник астрономии в виде таблиџ, составленных тем самым Ибн Йӯнусом, который сохранил нам в противоположность ал-Батта̄нй важное описание измерения градуса земного меридиана при ал-Ма'мӯне. Как и ма'муновские астрономы, Ибн Йӯнус, с полным именем Абӯ-л-Хасан ${ }^{\text {}}$ Алй аст-Садафй, ${ }^{1}$ был придворным астрономом. Свою работу по составлению таблиџ он начал около 380/990 г. на горе ал-Мукаттам около Каира в обсерватории, которая впоследствии вошла в состав большого научного учреждения Да̄р-ал-хикма, основанного фатимидским халифом ал-Ха̄кимом. Оно просуществовало с 1005 г. до конџа династии Фатимидов в 1171 г. ${ }^{2}$ и представляет довольно любопытную параллель к аналогичному учреждению Ха̄рӯна ар-Рашйда и ал-Ма'мӯна. Составление своих таблиџ Ибн Йуунус закончил незадолго до смерти (в 399/1009 г.); по имени правившего тогда халифа они получили название „аз-Зйдж ал-Хаалимй ал-кабйр" („Большого Ха̄кимовского Зйджа"). Работа дошла до нас в нескольких не совсем полных рукописях, которые частично были изданы и переведены еше в начале прошлого века Коссэном; труд его датирован XII годом Республики (18031804 гг. н. э.). Для детального изучения его теорий много сделал в $20-$-х годах математик-арабист Шой, ${ }^{3}$ осветивший его большие заслуги не только в области астрономии, но и сферической тригонометрии, где особенное значение придается одной изобретенной им формуле. Он по праву признан крупнейшим астрономом после ал-Батта̄нй.

Его таблиџы содержат очень любопытное краткое предисловие; оно сжато формулирует все те практические џели, которым служит в мусульманском мире астрономия и математическая география в связи с обязательствами, налагаемыми религией:
„Изучение небесных тел не чуждо религии. ${ }^{4}$ Одно это изучение позволяет узнать часы молитвы, время восхода зари, когда собираюшийся поститься должен воздерживаться от пищи и питья, конеџ вечерних сумерек, предел обетов и религиозных обязательств, время затмений,
${ }^{1}$ Reinaud. Introduction, ctp. XCIII-XCIV.-Brockelmann. GAL, I, ctp. 224, № 14; SB I, ctp. 400-401. - Suter. Ibn Yunus, ctp. 456. - Sarton. Introduction, I, стр. 716-717. - Mieli, стр. 109, 212.
${ }^{2}$ Sarton. Introduction, I, ctp. 717.
${ }^{3}$ Перечень: Sarton. Introduction, I, стр. 717. Определение широт: Schoy. Polhöhenbestimmungen, cтp. 19-21.
${ }^{4}$ Reinaud. Introduction, ctp. XCIV.

о которых нужно знать заранее, чтобы приготовиться к молитве, которую следует совершать в таких случаях. Это изучение необходимо, чтобы поворачиваться во время молитвы к Ка‘бе, чтобы определить начало месяџа, чтобы знать некоторые сомнительные дни, время посева, роста деревьев, сбора плодов, положение одного места по отношению к другому и чтобы находить направление, не сбиваясь с пути.
„Так как движение небесных тел связано с различными предписаниями Алла̄ха, а наблюдения, произведенные во время халифа ал-Ма'мӯна, уже устарели и вызывают ошибки так же, как произведенные раньше Архимедом, Гиппархом, Птолемеем и другими, то наш господин и повелитель имам ал Ха̄ким приказал произвести новые наблюдения над небесными телами, движение которых более быстро (Луна и Меркурий), и некоторых из тех, которые двигаются медленнее (пять других планет) ". ${ }^{1}$

Самые таблифы содержат введение, дающее все, что нужно для практики наблюдений, для вычислений, пользования таблиџами, как астрономическими в узком смысле, так хронологическими и тригонометрическими. Основной задачей была проверка предшествуюших наблюдений, которая внесла много нового. По линии, интересующей нас ближайшим образом, с точки зрения географии в узком смысле, важно определение положения 277 городов, которое дает „Большой Хапкимовский Зйдж", 一 количественно почти такая же џифра, как в упомянутых географических таблиџах ал-Батта̄нй.

Говоря о начале математической географии у арабов, нам приходилось уже упоминать важную роль посредника между Востоком и Западом, которую сыграл аз-Заркаа̄лй; приходилось упоминать и так называемые „Толедские таблиџы", в составлении которых он принимал главное участие. Абӯ Исх̣а̄к̣ Ибра̄хӣм ибн Йах̣йа̄ ибн аз-Зар ̧̧āлй, известный в науке главным образом под именем аз-Зарка̄лй, а в средневековой Европе Arzachel (ок. 420/1029-480/1087 г.), ${ }^{2}$ первоначально был, повидимому, просто гравером по металлу, в память чего и сохранил прозвище анНакূкашш. Работая над изготовлением точных астрономических инструментов, он стал изобретателем новой усовершенствованной астролябии и крупнейшим наблюдателем своего времени. Родился он в Кордове, но жил почти постоянно в Толедо, которое к тому времени делалось научным џентром Испании. Его трактат об астролябии (так называемой „С̣афйх̣ат аз-Зарк̣а̄лй" (в латинской передаче "Saphaea Arzachelis") оказал исключительное влияние на всю европейскую науку и тогда же был переведен на ряд языков - еврейский, латинский, кастильский,

[^1]итальянский. ${ }^{1}$ Такую же роль сыграли и составленные при его непосредственном участии „толедские" астрономические таблиџы, к которым он написал особый комментарий. Арабский подлинник до настоящего времени не обнаружен, но латинский перевод Герарда Кремонского XII в. известен более чем в пятидесяти рукописях, что одно уже говорит об их распространении. Большое влияние они оказали на работы Альфонса Ученого в XIII в.; спешиальный трактат посвятил ему Региомонтанус, и даже Коперник џитирует его наряду с ал-Батта̄нй. ${ }^{2}$ Для освещения всей деятельности аз-Зарка̄лй в последние годы очень много сделал испанский ученый - Хосе́ Мильяс Вальикроса. Значение его работ для географии иллюстрируется хотя бы тем, что он пользовался арабскими обработками Птолемея и, в частности, трудом ал-Хо̄ризмй. ${ }^{3}$ Он, между прочим, свел длину Средиземного моря к его почти настоящей величине 42°, после того как птолемеевское определение в 62° было уменьшено ма'муновскими астрономами до 54°. ${ }^{4}$

Конечно, не все произведения типа зйджей сыграли такую роль в истории мировой науки, как таблиџы ал-Батта̄нй и аз-Зарк̣а̄лй; однако и менее заметные иногда бывают интересны для нас или по связи с русской наукой или по возникновению их в областях, входящих в состав нашей страны. В конゅе $50-\mathrm{x}$ годов прошлого столетия Н. Ханыков впервые познакомил ученых с принадлежавшей тогда ему рукописью уником сочинения "Мйза̄н ал-хикма" („Весы мудрости") некоего ал-Х $\overline{\text { ä- }}$ зинй (рис. 7-9), поместив извлечения в журнале Американского востоковедного общества. ${ }^{5}$ Сочинение быстро привлекло внимание и было признано выдающимся произведением в области механики, физики и гидростатики; в частности, оказалось, что оно представляет значительный шаг вперед в начатом ал-Бйрунй изучении удельного веса. Ему был посвящен ряд отдельных монографий, а в последнее время готовится полное критическое издание с привлечением сверх нашей рукописи и открытых с тех пор в Индии. ${ }^{6}$ О самом авторе сведения расширялись значительно медленнее. Лишь постепенно выяснилось, что по происхождению он был греческим рабом, оказавшимся в Мерве, где господин отпустил его на волю, дав хорошее образование. Выяснилось, что ему принадлежит и другое произведение, которое нас главным образом интересует теперь, —„аз-Зйдж ас-Санджарй ал-му'табар" („Продуманные Сан-
${ }^{1}$ Carra de Vaux. Les penseurs, II, ctp. 229-230.
${ }^{2}$ Там же, стр. 230.
${ }^{3}$ J. K. Wright. Geogr. Lore, стp. 79, 394.
${ }^{4}$ Mehren. Udsigt, ctp. 27-28.
${ }^{5}$ Khanikoff, JAOS, VI, стр. 1-128 (дата 9 XI 1856, представлено 29 X 1857); стр. 1-78 текст и перевод; стр. 79-107 дополнения автора; стр. 107-128 доподнения редакџии.
${ }^{6}$ Brockelmánn. GAL, I, ctp. 494, No1; SBI, ctp. 902. - Sarton, Introduction, II, crp. 216-217 - Wiedemann. Al-Khăzinī, ctp. 1006-1007. - Mielí, стр. 154-155. - Suter. Mathematiker, cтр. 122, № 296, стр. 226.

Рис. 7. Абў Джа'фар ал-Ха̄зинй. „Мйза̄н ал-ххикма".
Со6р. Н. В. Ханыкова, Гос. Публичная библиотека им. М. Е. Салтыкова-Шедрина,

джаровские таблиџы"). Сохранились таблиџы в единственной рукописи Ватикана и сведениями о ней мы обязаны главным образом Наллино. ${ }^{1}$ Со-

Рис. 8. Абў Джа'фар ал-Ха̄зинй. „Мйза̄н ал-хृикма". Таблища веса испаряющихся частей жидкостей.
 Ne 117, А. 356.

ставлены они были в Мерве около 520/1126 г. на основе наблюдений, отно сящихся преимущественно к 509/1115-1116 г., применительно к широте

[^2]Мерва, определенной в $37^{\circ} 40^{\prime} .^{1}$ Интересно, что еще в них ал-Ха̄зинй давал специальные расчеты по космическим циклам Сиддханты и „тысячелетиям" Абу Ма'шара; ${ }^{2}$ индо-иранская традиция в астрономии представляла еще нечто живое. Свое название таблищы получили от имени султана Санджара, последнего „великого Сельджука" (511-552/1118-1157), при котором ал-Ха̄зинй действовал и которому он их посвятил.

В XIII век и в северную Африку переносит нас астроном Абу 'Алй ал-Хасан ал-Марра̄кушй (ум. в 660/1262 г.), ${ }^{3}$ который представляет интерес и для географии, не только потому, что сам много путешествовал, был на юге Испании, а северную Африку знал от Атлантического океана до Нила. Его основное сочинение „Джа̄ми' ал-маба̄ди' ва-л-га̄йа̄т фй 'илм ал-мйка̄т" („Объединение начал и џелей относительно науки о времени") в первой части характеризует те элементы наук, на которых основывается астрономия - космография, хронология, гномоника; вторая часть посвящена преимущественно построению астрономических инструментов и работе с ними. Им дан каталог 240 звезд для 622/1225-1226 г., равно как таблиџы широт и долгот для 135 географических пунктов, из которых 34 проверены им самим; ${ }^{*}$ интересно, что за начальный меридиан он принимает, еще по дома'муновской традиџии, Арйн. Свою работу он закончил около $627 / 1230$ г.; как все астрономические произведения, она вошла в современную науку раньше, чем географические. Уже в $30-$ г годах благодаря трудам отда и сына Седийо стал доступен в значительной части франщузский перевод ($1834-1835$ и дополнение 1844). Конечно, нельзя отрищать, что ал-Марра̄кушй, как отмечает Рено, ${ }^{5}$ был скорее практик и в научном отношении стоит значительно ниже Ибн Йўнуса; однако его работа была важным вкладом в математическую географию, а данное им описание инструментов до сих пор остается единственным по полноте в своей области.

В ту самую эпоху, когда ал-Марра̄кушй производил свои астрономические наблюдения в Магрибе, на Востоке произошел большой переворот: Багдад был завоеван монголами и аббасидскому халифату, по существу, пришел конец. Период, сопровождавшийся гибелью и разрушением ряда памятников культуры, тем не менее мог создать выдающееся произведение того типа, о котором мы говорим, „аз-Зйдж алИлха̄нй" - „Илхановские астрономические таблищы"; он мог создать и учреждение, достойно продолжавшее традицию „домов знания" ал-Ма'муна и ал-Ха̄кима, - знаменитую обсерваторию в Мераге. И таблищы,

[^3]и обсерватория связаны с именем одного из крупнейших ученых мусульманского мира Нас̣йр ад-дйна ат-Т уусй (597-672/1201-1274). ${ }^{1}$ В европейской научной литературе имя его иногда передается в форме Нāc̣ир ад-дйн, но, как показал Наллино, ${ }^{2}$ это основано на недоразумении и, согласно с общепринятой восточной традиџией, его почетным прозвищем надо признать единственно Нас̣йр ад-дйн. Он был двуязычен, писал

Рис. 9. Абў Джа'фар ал-Ха̄зинй. „Мйза̄н ал-хृикма".
Собр. Н. В. Ханыкова, Гос. Публичная библнотека им. М. Е. Салтыкова- ऐедрина, N 117, 九. 36.

по-арабски и по-персидски и в одинаковой мере может считаться представителем арабской и иранской культуры. В научных трудах он продолжал, конечно, арабскую традиџию, тесно примыкавшую к античной. Большое политическое искусство сохранило ему жизнь и возможность

[^4]работать даже в трудных условиях Персии в середине XIII в. Пришлось ему провести значительный срок в замке исмаилитов в Аламуте; попав в руки Хулагу, он сумел все же и у него сохранить свое влияние, вероятно не без участия своего авторитета астролога. Он был при нем во время взятия Багдада и добился уже в следующем году (657/1259) разрешения на постройку большой обсерватории в Мераге, в Азербайджане, где монголы обосновали свою резиденџию.

Обсерватория была снабжена лучшими по тому времени инструментами, описание которых сохранилось благодаря ученикам и сотрудникам ат-Т $\overline{\text { у.й }}$: оно дало материал для исследования нескольким европейским спешиалистам. Нас̣йр ад-дйн принимал участие иногда в походах монголов, чтобы собирать рукописи для библиотеки при обсерватории: по преувеличенным, как всегда в таких случаях, џифрам она состояла из 400 тысяч томов. Библиотекарем в ней состоял одно время известный впоследствии багдадский историк Ибн ал-Фуват̣й (ум. в 723/1323 г.), еще мальчиком попавший в монгольский плен, но спасенный Нас̣йр ад-дйном. Обсерватория была богато обставлена не только инструментами и библиотекой, но и большим сравнительно штатом, где наряду с учениками ат-Тусии работали и его сыновья, впоследствии продолжавшие его дело. Сохранились сведения об участии в наблюдениях даже китайских астрономов, что при характере монгольского государства не представляется невероятным. Обсерватория пережила, однако, только два поколения: после первой половины XIV в. о ней больше ничего не слышно. ${ }^{1}$ Развалины ее основания сохранились в Мераге до наших дней. ${ }^{2}$

Нас̣йр ад-дйн ат-Т़усй был энциклопедистом в полном смысле слова, и круг его материалов охватывал все науки, как спеџифически мусульманские, так и точные. Интересен тот отзыв, который дает о нем, под годом смерти, известный сирийский ученый Баргебрей; он близко его знал и одно время сам преподавал в Мераге.
„В этом году умер хбоджа̄ Нас̣йр ад-дйн ат-Т ӯсй, философ, управитель (ста̄х̧иб) обсерватории в городе Мераге, мудрещ (хакйм) с высоким саном во всех отраслях (фунӯн) мудрости. У него в обсерватории собралось много достойных математиков (ал-мухандисйн). Под его управлением находились все вакфы во всех странах, которые были под властью монголов. У него много сочинений по логике, физике и теологии, по Эвклиду и ал-Маджистุи. У него персидская книга по этике, превосходная до возможной степени. Он собрал в ней все изречения (нусӯc̣) Платона и Аристотеля по практической мудрости. Он подтвердил (йукаввй) мнения предшествующих, решил сомнения последующих и те
${ }^{1} \mathrm{O}$ ней еще см.: Schwarz. Iran, VIII, стр. 1019; IX, стр. 1403-1404, прим. 2, 3 .
${ }^{2}$ Minorsky. Marāgha, ctp. 288.
8 И. Ю. Крачковскнй. т. IV

возражения (ал-мy'axa3̄ām), которые они приводили в своих произведениях". ${ }^{1}$

В области точных наук ему действительно принадлежат новые обработки произведений почти всех крупнейших ученых античного мира, которых знали арабы: именно в его обработках пользовался ими мусульманский Восток почти до наших дней. В частности, он оставил новую редакцию „Альмагеста", которая почти вытеснила все предшествующие. Наблюдения свои для астрономических таблищ он начал в пожилом возрасте, около 60 лет, но все же успел их закончить в течение 12 лет к 670/1271 г., хотя по его теории, изложенной в предисловии, полный цикл астрономических наблюдений должен продолжаться 30 лет. ${ }^{2}$ В составлении их принимали участие и другие астрономы, действовавшие по его указаниям; таблиџы были основаны на меридиане Мераги; по титулу монгольских правителей Персии они получили название „Илха̄новского Зйджа" („аз-Зйдж ал-Илхӑнй"). Все произведение распадается на четыре книги: первая посвящена различным эрам, вторая - движению планет, третья - определению времени и четвертая-астрологическим вычислениям. Таблиџы эти хотя и не всегда содержали оригинальные наблюдения, приобрели большую популярность на Ближнем Востоке и были в обращении даже после создания таблиџ Улугбека. Мало того, они проникли в Китай и всецело подчинили себе местную астрономическую науку: один ученый из Самарканда, живший здесь, составил в 764/1362 г. по просьбе потомка Чингис-хана спеџиальный календарь, основываясь на таблиџах Нас̣йр ад-дйна ат-Туусй. ${ }^{3}$ Влияние их сохранилось там и после прекращения монгольского владычества в XIV в.; только в XVII в. оно было вытеснено трудами действовавших здесь западноевропейских иезуитов. ${ }^{4}$

Оригинал „Илхаَновских таблиџ" был состявлен, повидимому, на персидском языке, но известен целый ряд арабских версий, различных обработок и комментариев. ${ }^{5}$ Благодаря одному из таких комментариев Махммўда Ша̄ха Хулджй таблиџы стали известны и в Европе, извлечения из этого комментария с переводом издал в $1648 / 1650$ г. английский востоковед-астроном Джон Гривс ($1602-1652$). ${ }^{6}$ Как и в других зйджах, количество чисто географического материала в них довольно значительно, хотя ограничивается главным образом указанием долгот и широт. ${ }^{7}$ Нас̣йр ад-дйну ат-Тусй приписывается и спеџиально географическое со-

[^5]чинение на персидском языке с названием, восходящим к традициям классической школы арабских географов "Сурат ал-акаฮлйм" („Картина климатов"); подлинность его сомнительна: повидимому, на самом деле оно представляет лишь персидскую обработку труда ал-Исттахрй. ${ }^{1}$

Среди многочисленных учеников и сотрудников Нас̣йр ад-дйна атТуусй следует выделить одного, заслуги которого велики не только в области математической географии, - Кут̣б ад-дйна Махмууда ибн Мас ${ }^{\circ}$ ўда аш-Шйра̄зй (634-710/1236-1311). ${ }^{2}$ Как и Нас̣йр ад-дйн, он 6 ыл энझиклопедист: мутафаннин назвал его уже Абў-л-Фидӑ’.3 Однако в некоторых областях он шел глубже и проявлял бо́льшую оригинальность, чем первый. Бартольд называл его „великим астрономом, искавшим новых путей в науке", ${ }^{4}$ Сартон - вообще одним из крупнейших персидских ученых. ${ }^{5}$

Нас могут интересовать ближайшим образом два его произведения, тесно связанные между собой: „Ниха̄йат ал-идра̄к фй дирӑйат ал-афлаَк" („Предел достижения в познании небесных сфер"), законченное в 680/1281 г., и „ат-Тухффа аш-ша̄хййа фй 'илм ал-хай'а" („Шахский подарок по астрономии"), относящееся к $684 / 1285$ г. Второе в значительной степени представляет переработку первого. „Ниха̄йат ал-идра̄к" не является астрономией в узком смысле: она довольно систематически разбирает вопросы космологии, геодезии, метеорологии, механики, оптики. ${ }^{6}$ Видеман, много занимавшийся этой работой, считал ее ${ }^{7}$ лучшим арабским изложением астрономии (космографии) без помощи математических выкладок; особый интерес представляет рассмотрение им вопроса о форме, положении, движении земли ${ }^{8}$ и ее объеме. ${ }^{9}$ В вопросе о движении он склонен к отриџательному ответу. ${ }^{10}$ Географическая часть дает достаточно подробное описание морей и климатов по обычной, принятой у астрономов схеме, но в такой пполноте, которая в известных случаях сообщает материал, достаточный для составления карты. Важные сведения иногда касаются даже таких стран, как Индия и Ява. ${ }^{11}$ Магриб он знал не хуже:

[^6]когда монгольский хан Аргун завязывал дипломатические сношения с Франぬией и папой, Куттб ад-дйн мог показать ему в 688/1289 г. карту моря Магриба с его берегами, где, между прочим, было нанесено точное положение городов Малой Азии. ${ }^{1}$ Ащ-Шйра̄зй до сих пор остается не вполне оџененным в науке: ни одно из упомянутых сочинений до сих пор не издано, и почти всеми сведениями о его теориях мы обязаны Видеману, который в большом количестве разбросанных монографий ${ }^{2}$ детально осветил его взгляды на различные научные вопросы.

Последний зйдж, который завершает серию работ этого типа, связан с именем внука Тимура Улугбека (796-853/1393-1449); ${ }^{3}$ обстоятельное исследование Бартольда отчетливо определило его место и в истории и в науке. Любитель и знаток астрономии, он по примеру персидских Илханов в Мераге, основал в $832 / 1428$ г. большую обсерваторию в Самарканде; развалины ее нашли при раскопках в 1908 г., к сожалению, не в таком виде, чтобы можно было судить о всем здании. Только грандиозный квадрант в сохранившейся части производит и теперь сильное впечатление (рис. 10). ${ }^{4}$ В этой обсерватории и работал Улугбек с другими учеными, частью из Малой Азии, частью из Персии; результаты этих работ выразились в посвященных ему таблиқах и каталоге звезд, которые известны под названием „Зйдж-и-султ̣а̃нй джедйд" („Новый султанский Зйдж") или сокращенно „Зйдж Улугбек". Составлены они были в главной части около $841 / 1437$ г., вероятно на персидском языке, но почти одновременно с первоначальной редакцией появились арабские и туреџкие обработки, за которыми последовали многочисленные комментарии и переделки. План был приблизительно таков же, как в „Илх̄а̄новском Зйдже": после обширного введения первая часть разбирала различные эры, вторая - вопрос определения времени, третья движение звезд, четвертая - положение неподвижных звезд. В основе „Зйдж Улугбека", конечно, продолжал традиџию арабской науки по уже проложенному руслу и не открывал новых путей. В последующие века до нового времени такое крупное научное предприятие на Ближнем Востоке уже было невозможно: „Зйдж Улугбека" остался последним словом средневековой астрономии и высшей ступенью, которой могла достичь астрономическая наука до изобретения телескопа. ${ }^{5}$

Его обсерватория оказалась еще менее долговечной, чем Мерагская и, повидимому, не пережила своего основателя: уже в XVI в. она была

[^7]в развалинах. ${ }^{1}$ Ближайший сотрудник Улугбека по обсерватории, один из составителей зйджа, 'Алй ибн Мухаммед ал-Кӯшджй (ум. в 879/1474 г.), должен был покинуть Самарканд и после долгих скитаний нашел себе приют у Мухтаммеда II в Стамбуле, где явился распространителем астро-номо-географических знаний в Турџии: ряд его арабских и персидских произведений был переведен на турещкий язык. ${ }^{2}$ Быть может не случайно обстоятельство, что при том же султане „География" Птолемея еще раз была переведена на арабский язык.
„Улугбековский Зйдж" на много веков пережил обсерваторию: до последнего времени он был в ходу у различных муваккитов в мусульманских странах, при разнообразных операџиях, связанных с определением времени. Европа познакомилась с ним в XVII в. одновременно с Нас̣йр ад-дйном ат-Т़усй, главным образом благодаря трудам Гривса (или Гравиуса, 1648, 1652) и Хайда (1665). Введение к астрономическим таблиџ्мам было обработано Седийо (1847,1853); каталог звезд критически издал Болл Кнобл в 1917 г. ${ }^{3}$
„Зйдж Улугбека" завершает линию тех астрономических произведений, продолжающих традиџию еще ма'муновских ученых, которые имеют некоторое значение и для описательной географии, хотя бы указанием долгот и широт стран и городов. Перечислять их рядовых представителей нет возможности и необходимости, но основные памятники, которые в свое время создавали известную эпоху, исчерпаны. За небольшими исключениями, картографические реконструкџии сообщаемого ими материала не производились, сами астрономы этого обыкновенно не пытались делать, у географов в большинстве было мало понимания астрономических данных. Выгодное исключение, как мы видели, представлял в первой половине X в. Сухра̃б, который сохранил ту же систему, что у ал-Хо̄ризмй, но значительно расширил изложение современным ему арабским материалом. ${ }^{4}$ Несомненна связь его не только с математикой, но и с описательной географией. К начальным моментам этой описательной географии в аббасидском халифате мы теперь и обратимся.

[^8]
[^0]: ${ }^{1} \mathrm{Nallino}$. Al-Battānī, текст, III, стр. 25, 6-28, 22; перевод, I, стр. 17, 3-20, 13; комментарий, I, стр. 164-177. - Reinaud. Introduction, стр. CCLXXXIII-CCXC; текст, стр. CDLXI-CDLXIV.-Mehren. Udsigt, стр. 13-18. - Реконструкџия карты см.: Reinaud. Introduction, стр. CCLXXXII, № 1 .

[^1]: ${ }^{1}$ Reinaud. Introduction, crp. XCIV-XCV.-Reinaud. Notices sur les dictionnaires, стр. 76.
 ${ }^{2}$ Brockelmann. GAL, I, ctp. 472-473, No 3; SB I, ctp. 862. - Nallino. Al-Falak, cтр. 170, 176, 188, 235-236 (= Racc., стр. 221, 225, 235, 272). - S arton. Introduction, I, стр. 758-759. - Carra de Vaux. Les penseurs, II, стp. 227-230. Mieli, ctp. 184-187.

[^2]: ${ }^{1}$ Nallino. Al-Battānĩ, I, crp. LXVII, cтp. 161, 269-271, 279-281.

[^3]: ${ }^{1}$ Там же, стр. LXVII.
 ${ }^{2}$ Nallino. Al-Falak, ctp. 179 ($=$ Racc., ctp. 227-228).
 ${ }^{3}$ Reinaud. Introduction, ctp. CXXXVI-CXXXVIII. - Brockelmann. GAL, I, eтp. 473-474, № 7; SB I, стр 866. - Sarton. Introduction, II, стр. 621-622. Kramers, EI, EB, стр. 64, 71. - Mieli, ctp. 210-211.
 ${ }^{4}$ Систему его наблюдения широт см.: S choy. Polhöhenbestimmungen, стр. 21-33.
 ${ }^{5} \mathrm{Re}$ inaud. Introduction, стр. CXXXVII.

[^4]: ${ }^{1}$ Brockelmann. GAL, I, ctp. 508-512, №8; SBI, стр. 924-933. - Ruska. Al-Țūsī, cтp. 1063. - S arton. Introduction, II, стp. 1001-1013. - Reinaud Intro_ duction, ctp. CXXXVIII-CXLI. - Carrade Vaux. Les penseurs, II, стp. 222-225. Strothmann. Die Zwölfer Schi'a. - Mieli, ctp. 150-154. - Wiedemann, Beiträge, LXXV, стр. 363-379. - Wiedemann. Al-Ṭ̂̂sî, стp. 289-316. - Browne, Literary History, II, стр. 484-486; III, стр. 17-18.
 ${ }^{2}$ Nallino, OM, VIII, ctp. 43-44 (= Racc., II, 1940, стр. 463).

[^5]: ${ }^{1}$ Ṣâliḥânî, crp. 500-501. Cp.: Browne. Literary History, III, crp. 18.
 ${ }^{2}$ Reinaud. Introduction, ctp. CXXXIX-CXL
 ${ }^{3}$ Schefer. Notice, ctp. 24-26. - Brockelmann. GAL, SB II, crp. 297, № 1, c. - Blochet. Catalogue, cтp. 169, № 6039.
 ${ }^{4}$ Бартолвд. Культ. мус., стр. 85.
 Brockelmann. GAL, I, ctp. 511, No 45; SB II, ctp. 298
 ${ }^{6}$ Brockelmann. GAL, I, ctp. $511-512$, № 45 . - Greaves.
 © Cp.: Ferrand. Relations, II, ctp. 357-358.

[^6]: ${ }^{1}$ Miller, I, ctp. 22, № 22. - Sarton. Introduction, II, ctp. 1009, № 17 , подробно в работе: Mžik. Abbildungen, стр. 149, с описанием карт у нас: G. Melgunof.
 ${ }^{2}$ Brockelman. GAL, II, crp. 211-212, No 1; SB II, cтp. 296-297. Wiedemann. Ḳuṭb al-Dīn, ctp. 1252-1253. - Sarton. Introduction, II, ctp. 10171020. -Mieli, crp. 151, 154, прим. 8.-Reinaud. Introduction, стp. CXLl. Honigmann. Die sieben Klimata, ctp. 162-163, 167.
 ${ }^{3}$ Wiedemann. Ḳuṭ al-Dīn, стp. 1252.
 ${ }^{4}$ Бартольд. Культ. мус., стр. 82.
 ${ }^{5}$ Sarton. Introduction, II, стр. 1017.
 6 Там же, стр. 1018.
 7 Wiedemann. Ḳụ̣b al-Dīn, cтp. 1252.
 8 Wiedemann. AGNT, III, стр. 395-422.
 ${ }^{3}$ Там же, стр. 250-253.
 10 Там же, стр. 413-417.
 ${ }^{11}$ Ferrand. Relations, II, ctp. 612-613.

[^7]: ${ }^{1}$ Рашйд ад-дйн в труде: Blochet. L'Étude, стр. 4. - Ташкентск. рукоп. А $236{ }^{\text {a }}$.
 ${ }^{2}$ Перечень: S arton. Introduction, II, erp. 1020. - Wiedemann. Ḳuṭb al-Dīn, cтр. 1252-1253.
 ${ }^{3}$ Brockelmann. GAL, II, crp. 212-213, № 3; SB II, crp. 298. - Bouvat, ctp. 1077-1078. - Mieli, cтp. 263, 266-267. - Carra de Vaux. Les penseurs, II, стр. 225-226. - Бартольд. Улугбек, стр. 107-111. - Бартольд. Культ. мус., стр. 94-96.
 ${ }^{4}$ Снимок: Бартодьд. Культ. мус., стр. 95.
 ${ }^{5}$ Там же, стр. 94.

[^8]: ${ }^{1}$ Там же, стр. 95.
 ${ }^{2}$ Brockelmann. GAL, II, ctp. 234-235, No 4; SB ll, crp. 329-330.-Bel, EI, I, eтp. 304.
 ${ }^{3}$ Brockelmann. GAL, SB II, crp. 298.
 ${ }^{4} \mathrm{Kramers}$, EI, EB, ctp. 64.

